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SUMMARY

This paper is a systematic study of the mathematical
structure underlying nearly perfect exchange markets which are
spatially or temporally separated. The principal questions
investigated are "What are equilibrium conditions for a set
of exchange rates?”" and "How can arbitrage possibilities be
discovered, 1if they exist?" The analysis involves the combined
use of an algebraic representation, which is conducive to the
derivation of qualitative features characterizing a multi-
exchange market; and twc linear programming models, one of
which has use in establishing a desirable set of equilibrium
exchange rates, and the other of which has a special form
permitting an efficient computational scheme for discovering

arbitrage possibilities.
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A MATHEMATICAL STUDY OF ARBITRAGK

Jeremy J. Stone and Harvey M. Wagner

INTRODUCTION

Arbitrage is an important equilibrating mechanism in all
nearly perfect exchange markets which are spatially or temporally
separated. Por example, a differential in foreign exchange rates
which allows the possibility of buying a money in one market and
selling it at a net gain in another is soon removed by the action
of arbitragers; the profitable transactions, by creating addi-
tional demand for one currency and supply of the other, drive the
foreign exchange rates back tc equilibrium, Similar economic
forces are present where trading takes place in stocks and shares,
bullion, marine insurance, and commodities for spot and future
delivery. This paper is & systematic study of the mathematical
structure underlying such markets. We primarily address ourselves
to the questions, "What are equilibrium conditions for a set of
exchange rates?” and "How can arbitrage possibilities be dis-
covered, if they exist?"

Our analysis involves the combined use of an algebraic repre—
sentation, in Section 1, which 1s conducive to the derivation of
qualitative features characterizing a multi-exchange market, and
of two linear programming models, Sections 2 and }’ One of these
linear programming models has use in establishing a "bvest" set
of equilibrium exchange rates (the definition of "best" is given

below) while the other has a special form permitting an efficlent

*Some of our results are derivable .sing either one of the

techniques of analysis; in such cases, we have attempted to employ
the method which appears most immediate.
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computational acheme for discovering arbitrage transactions.

We begin by considering only n—country currency exchange.
Section 1.1 is devoted to situations of "pure exchange”" markets
or networks in which buying and selling rates between any two
currencies are exact reciprocals (thus ruling out two-—currency
arbitrage) and do not differ in the associated two countriea..
Section 1.2 is concerned with "general exchange networks," in
which two—currency arbitrage may exist, brokerage fees may be
levied againat transactions, dealings in commodities, bullion,
stocks, etc. are permitted as exchange possibilities, and ex-
change rates may not exist explicitly for all pairs of currencies
and commodities. Sections 2 and 3 contain the programming models
which solve for equilibrium systems and arbitraging schemes,

respectively.

l. AN ALGEBRAIC REPRESENTATION OF EXCHANGE TRANSACTIONS

Definitions and rules of operation
By a8 network we shall mean a set of countries or, equivalent-
ly, currencies and a set of rates between pairs of ccuntries. The
countries ars thought of as nodes and the rates as arcs on a
graph. If a rate is prescribed betwsen countries Xi and XJ,
the rate between xJ and x1 will also be proacribed?. in
other words, it is assumed that whenever a market exists for the

purchase o' one currency in exchange for another, there 1is

*Por example, we assume the exchange rate of dollars for
pounds and of pounds for dollars are exact reciprocals of each other,
and the dollar—-to—pound rate is the same in the United States as in

Britain,.
*eThroughout the paper, we assume that no rate 1s zero.
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conconiitantly a market for the opposite exchange.. If these
rates are always reciprocal, the network is called a pure ex—
change network. If rates are prescribed between all pairs of
countries, the network is designated a complete network. Networks
which are not complete are referred tc as incomplate notworka...
We use the term "currency devaluation” in a broad sense, not
distinguishing between devaluation and appreciation. We shall
always mean by devaluation the action of a country in changing
its rates by a constant factor with respect to all other countries.
We define "xixJ” to be the rate of exchange of country xi"
currency for that of XJ'a. A series of letters, e.g. x2x7xjxux5x7 ’
is defined to be the product of the numberese x?x7, x713, 13x 5
xuxs, X517. Such a series of letters, to be referred to as &
chain, 1is seen to represent the number of units of the last country's
money which might be obtained by taking one unit of the first
country's money and sending it through the indicated series of
countrioe.'.. In many cases we must discuss general kinds of
chains, and accordingly, for transactions of secondary interest
in the computation, we do not indicate the exact country involved
but simply number the countries by a superscript. PFor example,
X, XX X O

1 ¢ indicate3s money flowing from country Xl to &D‘nd

®Such a condition might not hold fur a financier in a country
imposing tight exchange control; the central bank might be willing
to exchange domestic currency for some scarce currency but unwilling
to make the opposite transaction.

®ee assume that all networks are connected, i.e., it 1s
possible to exchange any currency for any other currency via some
series of transactiong

eoep string of letters may represent either a number or a
series of countries. Context will make our usage clear.
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going through five other countries, (not necessarily distinct),
before returning to xl . Chains which have the property of

the above example, that they begin and end with the same letter,
are called cycles. To arbitrage in a currency network is to per—
form a series of exchange transactions resulting in no net loss
of any currency and a net gain in some currency. Examples of
arbitrage might involve a "cycle" of transactions such as trading
dollars for pounds, pounds for fra-cs, francs for lire, lire for
dollars, or a simultaneous exchange of lire for pounds, pounds for
francs, francs for lire, with profit in lire which is then trans-—
formed into dollars. 1In particular, a cycle permits arbitrage
when its value is greater than 1. There can be no arbitrage

in a network unless such a cycle oxiaca.. A network is said to

be in equilibrium if it is not possible to arbitrage in that

network.

The above definitions are seen to define the following rule:.

(1) xxl..xpxx ..x8 xt L XXy X xl S o
1 X =X

Our definition of a pure exchange network gives

(2) X, JX « 1 for all 4, J

®If a chain does not return to its point of origin and "buy"
at least as much as it "sold" when it Legan, the arbitrager waould
be in debt at that point.

®®A raised dut between series of letters indicates multiplication.
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1.1 COMPLETE PURE EXCHANGE NETWORKS

Most elementary expositions of arbitrage illustrate such
schemes in terms of two currency or three currency exchanges
under (2). Of course it 1s recognized that more complicated
possibilities might be constructed. In this section we investigate
the s“rictural relations involved in n—country pure exchange net—
works. Our results will be segregated into those of interest to
the arbitrager, who is assumed to be unable as an individual to
affect the exchange rates by his own transactions, and those of
interest to an intermational monetary conference, which is con—

cerned with multi-latera) exchange rate agreements.

2:1.1 Arbitrage. We assert in the following statement that in

a complete pure exchange network the value of any chain remains
unaltered 1f a new currency is introduced within the chain as
shown below.

PROPOSITION 1: In a complete pure exchange network,

(3) xixl...xpxdxl...x‘xk - xixl...x"x.,x“I + X_X xl""qu

J
Proof:
xd oPxxt. % e xoxt. L x, - xxt. L Lx9
XXX e x Xt XX xS
e XX ... PX, - XXX, - X, X x3x,
XX XXX XX
e X X, . xPx cx x.xt...x9
XX XXXt x9x

by apply!ng in order, (1) /2) and then (1) three times.
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Next we assert that exchanging currency in "different

directions” along a chain in a pure exchange network determines

reciprocal numbers.

PROPOSITION 2: In a pure exchange network,

x xR, - x P P -

Proof: This follows easily by applying (2), (1) and induetion.

As 2 corollary we have for the case J = 1 that in 8 pure
exchange network the values derived from traveling in opposite
directions around a cycle are reciprocal; consequently, if it
is unprofitable to conduct a given "cycle" of exshange transactions
in a pure exchange network, it is profitable to conduct the trans-—
actions in exactly the revarse order.

The next proposition states the fundamental property of
complete pure exchange networks. If it is possible to arbitrage
in the network,then every currency wil) be able to arbitrage
in some three—way (triangular) transaction. Contrapositively,
if triangular arbitrage does not exist for any given country X

no arbitrage can exist in the entire network.

PROPOSITION 3: Let Xb be any designated country in a complete
pure exchange notﬁork, S. 8 1is not in equilibrium if and
only if it is possible to arbitrage from xo through two other
countries (1.e. XOX1XJXO > 1 for some 1, J) .
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Proof: The condition is obviously sufficient. To show that it

is necessary assume that arbitrage is possible and thus that

1
xaxbxcxdx
of (1), (2) and Proposition 1 we shall systematically turn the

...x"xa > 1 for the indicated countries. By application

cycle into a series of triangular (4 letter) cycles from xo.
This is done in such a way that the product of the values of
these cycles will be equal to the value of the original oycle
and hence greater than one. 8ince a product of non-negative
numbers can not be greater than one unless at least one of the
factors 1s greater than one, we shall conclude that xo can
ardbitrage in at least one triangle. The construction follows.
The reader may verify that at each step cf the construction the
value of the cycle or product of values of the cycles remains
fixed.

Cabe 1. a ¢ 0. Construct

1 P
xoxaxbxoxdx N ¢ XaXo

using (1) and (2). Then consider the third and fourth let‘ers
of the cycle, xb and xn , and act as follows:

A. b4 0, c ¢ 0. Construct

xOxaxbxb | xOxcxdxl"'xpxaxo

using Proposition 1.
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B. b=0,¢c ¢ 0. Construct
. 1 - 1 p
XoXaXo ° XoXoXqX ...x"x.xo Xg X XgX .. XPX X
using (1) and (2).

C. D40, c=0. Construct

XX hp * Kk T TRK

using {1).
Case 2. a ~ 0. In this case the cycle 1is of the ferm

9
- P
xoxbxoxdx eeoX Xo -

Perform the steps A, B, and C letting xo and xd of this
cycle correaspoend respectively to the countries xb and xc of
the other case.

Having performed these steps on the original oycle we
now continue this process working from left to right on the
remaining cycle if it has more than four letters. This cycle
will satisfy case 2. We preserve untouched the four letter
cyocles produced (in alternatives A or C). Since three letter
cycles correspond to factors of 1 which can be ignored, and
because cycles (which are the only entities turned up by the
algorithm) must have at least three letters, this method must

result in a set of cycles of four letters or more.
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Hounv;r except possidbly for the original application of the
algorithm, the sigze of the oycle being dealt with must decrease
by at least ene letter. Henee the method must terminate in a set
of four letter oycles. This, taken with the introductory argu—
ment, establishes the result.

Pig. 1 1llustrates the decomposition in the proof for a

possible 7 country cycle.

X
2°n
. X
CYCLE X ~ / AN
b R LY // ¥
1_ '!; ' xfj
Xo
X, X X
-t
DECOMPOSITION ';
Vo= > Xs
X . i
0 Y Xg
Pig. 1

As a corollary to this result we have

Corollary 1. Given a complete pure exchange network with n

(n=1)(n=2)
2
determine whether or not artitrege exists anywhere in the system.

cycles tc

courtries, it is sufficient to examine

(This represents the number of triangles from one country.)
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One might ask whether it is possible to establish definitely
the existence of equilibrium by testing less than (n=l)(n-2)/2
cycles. The next result show that this is not possible, no matta

how complex the cycles considered.

PROPOSITION 4: Q@iven a complete pure exchange network with n

countries, 1t 1is not possible to determins that the system is 1in

(n=1)(n-2) cycles.

equilibrium by examining fewer than

Proof: Order the triangles through some fixed country xo and

let Yy be the value of the ith triangle in some fixed direction,

1 e1,2,..., (9‘1)§“'21 . We first show that the {?1} are

independent (i.e. there is a network corresponding to any positive
set {&1} ) for let -[&1°}>bo any desired positive set of values.
Let XOXJ take on any fixed positive values. Define

0
X, Xy =y, xil X - x0x12

1,1,

where X1 and x1 are the countries involved in the 1th
1 2
triangle. Since the rate X1 Xi appears in only the ith
1l 72
triangle this uniquely defines it and we can easily see that

it gives the required value for ylo . Hence for any set of

(n=1) (n=2)
’ 2 , there is a

positive values {?1} 1 @1,2,...

corresponding network. We shall ahow that for any set of cycles
(n=1)(n=2)
C, » k= 1,2,...0Kg » ko < )éf (and corresponding values)
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there 18 a network which is not in equilibrium but which has
rates such that the given cycles have the given values. Hence
the cycles could not have determined that the given network

was in equilibrium. By Proposition > each given cycle can be
replaced by a set of triangular cycles with origin xo, the pro-
duct of which gives the value of the original cycle which we may
take to be ono.. Hence the given cycles correspond to the equa~

tions

(r»u!u»g .
1k

1TT1 Yy *l k=1,2,...,k,

where the a,, are integral exponents. Since ko < -L“—Z-l—%‘ﬁl

it is evident that we may solve for ko of the Yy in terms of

/
.LQ'I%}“'Q) -~ ko variables. Hence at least one of

the y, may be chosen not to bLe equal to one. Allowing the

the other

others to te determined or chosen in any fashion consistent with
the equations and the general positivity requirement, we determine
a set of Xyi}. By the independence argument there exists a network
with thea; yy o By the construction of the {yii the given cycles
will have value one in this network. But eigchat least one
triangle arbitrages in the network, it is not in equilibrium.

Hence that the Ck, K = 1,2,...,k0 have value one 18 not sufficient

to determine that the network 1s in equilibrium und the result is

established.

¢If the cycle did not have value one, no netwoerk containing
that cycle could be determined to be in equilibrium. Any country
in the cycle could arbitrage by sending its currency through the
cycle in the direction having its value greater than one (see

Proposition 2.)
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1.1.2 Multi-lateral Adjustments Up until now, we have con-—

sidered relations that ascertain the existence of arbitrage
possibilities in a complete pure exchange network; the results
involved determing the values of a set of chains. Here we shift
attention to the ocomponent rates themselves. We estadblish ocon-
ditions which must exist among the exochange rates in order for
us to oénstruot an eQquilibrium system, or to restore a system

to equilibrium; also we delineate the effects of exchange rate

alterations and devaluations upon & pure exchange system.

PROPOSITION 5: Q(iven an incomplete pure exthange network in
equilibrium, S, whioh oontains all n countries, there is a unique
complete pure exchange network l', in equilibrium which contains
it.

Proof: Assume xixJ is not defined in 8. 9$inoe, by hypothesis,
all countries are part of S. there exists a path xlxl...xpxj

in 8. Define XIXJ - xixl...xpxj . This definition is unique.
Por assume that another path exists xixP+1...xp*qu in 8.

By assumption S 1is consistent, so
P+Q +1 1 _ +q +1y

xixl...xpxjx T A AR % S 2 SRS § ALT At AR

By proposition 2

xixp*'l...xp*qxj ¢ x.’xp+q-o-xp*1x1 - ] \'n
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and since no rates are zero we have

xixp*1 . xp*qxJ - xix1 .. xPx

g
The network S with this rate adjoined is again consistent, for

if arbitrage involving the new arc is possidble, i.e.,

1 xa+1

8 8+t
R ¢ xixJ veoe X Xm >,

me
then

B ERRE T 0F SRR xprx"+1 o XX >0

is easily seen to hold. But since this cycle involves only
tres in S, we nave achieved a contradiction. Thus the assign—-
ing of rates can be carried out in such a way as to preserve
consistency, and hence the subnetwork can be expanded into

a consistent one. It is unique by construction, which gives
the result.

As simple corollaries we have

Corollary 1: The n—] rates between a currency and all other
currencies in a pure exchange network determine a unique

equilibrium in the complete network.
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Corollary 2: A chain of links through all nodes, of the form
xlx?x)"’xn-lxn' in a pure exchange network determines a unique

[ ]
equilibrium in the complete network.

In our discussion to this point, we have made no assumption
about the institutional aspects of currency markets; we have
assumed only that a pure exchange network exists. The following
theorems are directed at the implications of currency devaluation
and alteration of rates. Conseqiently it is helpful to construct
a hypothetical institutional framework in whioch such changes can
be made. We suppose that each currency is managed by a central
authority in the corresponding country. The authority has discre--
tionary power %o set exchange rates; but, since throughout this
section we preserve (2), any direct alteration in the rate xixJ by 11

is automatically agreed to by XJ in that X, makes the reciprocal

J
change 1in iji.

*This result implies an alternative to Proposition 3, viz.,
in a complete pure exchange network, 8, consisting of n countries,
8 is not in equilibrium if and only if one of the following equalities
does not hold:

xlx} - XIX2X}

XXy = X XXX,

XX, = X;X,X5. .. X
LX, = XXX,
KX = XX, X

6oXn = NoX 1%
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We assert a well known statement that an across—the-=board
percentage change in any one country's rates (and the correspond—

ing reciprocal change in the crouss rates) does not create arbitrage

possibilities.

PROPOSITION 6: If a currency is devalued, in a network in equilib-

rium, the network remains in equilibrium.

Proof: Let Xo be the devaluer. Let a be the factor of devaluation.
By Proposition 3 it is sufficient to verify that every triangle
through Xb has value 1. This verification is left to the reader.

Suppose that in p countries, the monetary authorities decide
to change several or all of their exchange rates with other coun—

tries; what is the effect cn the system? We first prove

PROPOSITION 7: Let 8 be a complete network in equilibrium.

Let xl, x2w..xp, p < n,ocountries devalue thei. currency. Then
)
the resulting network S8 is independent of the order in whigh

devaluation takes place.

]
Proof: Let primes indicate the new rates (in 8 ) and cunsider

& country X', 8 > p,which 18 not devaluing. Then defining ki by

] t
XX, = Kk XX, ! ® 1,2,...p

and considering

[ ]
X, X, = XX, 1 @ pel..,n 1 ¢ 8

we see that the rastes attached to Xa are defined independently
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of the order of devaluation. S8Since by Corollary 1 of Proposition 5§
these rates uniquely determine S', 8' is independent of the
order of devaluation.

We prove a statement which contains as a special ocase a

converse of Proposition o.

PROPOSITION 8: Let 8 be a complete network in equilibrium,

Let 8' be a complete network in equilibrium which arises from

S through the alteration of exchange rates by a group of countries,
say xl, x2, oR1N xp, p < n. Then 8' is equivalent to a sys—
tem resulting from a uniquely determined devaluation of each of

the p ocurrencies.

J
Proof: Llet primes indicate the new rates (in 8 ) and, considering
a currengy x'.a > p» which 18 not in the group, define the k1

by the equations
) ]
szi - klx_xi 1w 1,2,.:0;0-
Bvidently we also have
1 @ p+s1, p+2,..,n 1 ¢,
A complete network with these new rates for x. ocould be achieved

by having each currency X1, i1 »1,2,...,p, devalued by a factor

l/k1 ,1e1,2,...,p . By Proposition 6 such a sequence of
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devaluations would preserve squilibrium. By Corollary 1 of Pro-
position 5 there 1s a unique complete network in equilibrium with
] '

these rates. Hence this network must be 8 , and 8 has been
attained by devaluing each of the p currencies. The devaluation

required of each currency is uniquely determined by k This

1 .
completes the proof.

A corollary is that if a single country alters its exchange
rates by any process other than devaluation, arbitrage possibili-

ties arise.

Corollary 1: The only unilateral action which preserves equilib—

rium {s devaluation.

Purthermore by repeating the proof of Proposition 2 as if Xa

wished to change p of 1its rates we have

Corollary 2: Let S8 be a complete network in equilibrium and
let Xa change only p of ite rates, p < n. Then to reach the
new equilibrium determined by this action requires the equivalent
of a devaluation of p currencies. The devaluations are uniquely

determined.

Corollary 3: Let S, 8 be complete networks in equilibrium.
'
Then § may be transformed into 8 by no more than n—l

devaluations.

We turn from discussing rate alterations which preserve

equlilibrium to the problem of establishiny equilibrium in a given

system by adjusting as few rates as possible. Such a question
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might arise if there existed an international monetary conference
which desired a good way of altering the current rates to remove
the extant arbitrage poslibilitiol.. We start by examining a
case in which only relatively few rates need to be changed; this
case lioludes the event in whioch only one rate is improperly set
(1.e., in which a single alteration establishes equilibrium).

We define a complete network to be in near—equilibrium 1if
it can be changed to an equilibrium network by altering fewer
than (n=1)/2 rates. We demonstrate the relationship between a
network in near—equilibrium and the triangular arbitrage trane-

acticns existing in the system.

PROPOSITION 9: A necessary and sufficient condition that a

complete network, 8, be in near-equilibriuwr is that

N(3) = min N(1) < ()2,

where N(1) 1s the number of triangular arbitrage possibilities

from X1 .
n—1
Proof: Assume N(J) < - - Let IJkahXJ permit arbitrage.

Define x;x; - xka ¢ xem to be the new rate replacing xkxm q
Repeating this procedure for each instance of triangular arbitrage

and leaving the rest of the network untouched, we create a new

*The reader should note that in choosing among types of
possible alterations which would restore a system to equilibrium,
one would not necessarily select that set which requires the least
nunber of altered rates. A full discussion of other alternatives

is beyond the scope of this paper.
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system 8' in which XJ canno’ arbitrage in any triangle. By
Proposition 3, S' is in equilibrium. Since only N(J) arcs were
changed, S was in near~equilibrium and the condition 1is suf-
ficient. Now assume that the condition is not satisfied. Then
N(1) 2 251—- for all 1 and because the equilibrium, 81 ’
determined by the ith country's rates (Proposition 5, Corollary 1),
can be achieved only by the construction above (ochanging a specifioc
rate in each of N(1) triangles), 8i cannot be achieved by changing
fewer than N(1) 2 255- rates. Any other attempt to achieve
equilibrium must change at least one arc attached to every ooun-
try, or at least n-1 arcs. S8ince n-l1l ) Qsl— for all positive
n, 8 ocould not have been in near-—equilibrium. This completes
the proof.

We next show the uniqueness of the equilibrium reached by
changing less than (n-1)/2 rates. We define R(S,T), where
S and T are complete networks, to be the number of arc¢s which
are not the same in the two networks. R 1is a metric. 1In this
case the triangle inequality states that it requires at least

a8 many arc changes to transform network 81 to 82 and then

to 8} as it would to transform S1 to 8} -

PROPOSITION 10: If S 1s in near-equilibrium, there is a unique

] L]
equilibrium situation $ such that R(S8,8 ) ¢ ﬁgl_

Proof: By the previous assertion we know that an 8J exists

with the property in question. Assume that a distinot equilibrium

situation S' has the same property. Since the n—-1 rates of

X1 uniquely determine an equilibrium situation (Proposition 5,
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J
] [
indicates the aros in 8 ., By Corollary 2 of Proposition 8,

Corollary 1) it must be that X X; ¢ x_,xi for some 1, where
the number of values, 1, for which the inequality holds indicates
the number of devaluations that must ooccur to take 8 1into 3'.
Bach devaluation changes -1 arcs and no ret of them can change
fewer than n-1 . Nence R(SJ.S') 2 =1 . However since both

3, and 8 have the property that their “"distance’ from 8 is

J
less than 253——, we conclude by the triangle inequality,

R(8,,8') g R(S,8) + R(S,8') <5 + 1 ana

Hence it is a contradiction to say that 3' and S are distinct,
and the proposition is proved.

Propositions 9 and 10 enable one to identify the near-
equilibrium networks and to use the constructive method in
Proposition 9 with the certainSy that it achieves equilibrium
while changing the fewest number of rates.

These results permit one to recognize and repair the special
cass in which a previous equilibrium has been destroyed by a sin-
gle inocorreotly set rate (for n > 3). If the nstwork is not in
equilibrium gnd does not satisfy the condition of the previous
proposition then the determination of an equilibrium system
requiring the least number of altered rates is, in general, a

difficult problem, and we defer a solution until Section 2.
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1.2 GENERAL EXCHANGE NETWORKS

In this section we drop the assumption that the network is
a complete pure exchange currency network and consider general
networks. In particular we remove (2) (and thereby the general
validity of Proposition 2). We permit both xixei > 1 and
X1XJX1 < 1} the former possibility immediately leads to arbitrage,
and the latter possibility corresponds to admitting drains which
might include brokerage charges, currency shipment charges, and
insurance (insofar as these can be represented as a percentage
of the amount of currency exchanged). Thus we permit the actual
or quoted rate to be diminished to reflect the existence of
ad valorem transaction costs. These deviations from (2) are
usually of smail magnitude and for that reason, several of the
previous results, e.g., those concerning devaluation, retain a
certain validity, although in a strict sense the assertions can
no longer be proved. Por the arbitrager, however, tiny deviations
from the pure exchange case are very important since, in reality,
his rate of profit is itself usually small; we postpone until
Sections 2 and 3 techniques of analysia open to the arbitrager
in the general network. The crucial implication of relaxing
(2) 1s that Proposition 3 falls to hold. We also relax the

assumption that the network need be complete. In the general

network, the analogue of Proposition 3 is Proposition 3',

PROPOSITION 3': (1) Let Xo be any country in a complete exchange

network, S, which satisfles xoxlxo « 1 for all {. Then it 1s
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possible to arbitrage in 8 if and only If it 1s possible to
arbitrage from xo through two other countries (1i.e. IOXJXkXb > 1
for some (J,k)).

(11) In a general network, if it 1is possible to arbitrage,
then it 1s pcssible to arbitrage in a series of exchanges which
involves no more than one buying and one selling transaction for
each country.

As the reader may verify, the hypotheses in (i) are the only
occnditions necessary to apply the construction of Proposition 3.
The result is applicable if an arbitrager faces no transaction
charges when dealiing in his domestic currency; the effective
charges would then have the neocessary property.

The assertion of (11) follows from the fact that, even in
a general exchange network, a cycle that passes through a country
twice can be presented as two cycles whose product has the original

cycle's value. Thus, applying (1) twice, we have

xixl...xprx"*l...qu.x“*l...x"x1 -
J

1 +1 . Q+l -
xix ...xpr L4 fo oooquJ xe ooo{‘xi

1 P 1 . +1
X, X%, ..X xeQ* ...x“x1 xep ...quJ

If the original cycle arbitraged, one of the derived ones must.

The proposition follows by repeating the process as many times

as 1s necessary.
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The reader should observe that since the network is connected,
if profits can be made by arbitraging, they can be exchanged into
any other currenocy.

Proposition 4 remains true if the word "pure” is deleted,
but it loses much of its significance unless a situation like
the one hypothesized in (1) above exists. Proposition 5 and
its corollaries remain correct if the words "pure" and "unique”
are deleted. Propositions o and 7 hold® but Proposition 8 and
its three corollaries do not; however if the deviations from
pure exchange are small (as they usually are) and if the multi-
lateral rate alterations contemplated are large (as they usually
are) the results are essentially correct. Propositions $ and 10
are no longer true and their significance remains unimpaired only
in the case that rates are so badly set that arbitrage is of a
different order of magnitude from that of the deviations from
pure exchange (e.g. if rates are actually set at a distinctly
incorrect level); as we show in Section 2, the problem with
which these propositions are concerned is completely solved by

a linear programming formulation.

1.2.1 Multi-Bloc Exchange. An incomp.ete network of particular

interest is one 1n which the n countries are divided into =m
ocurrency blocs, each of which has a single distinguished currency.
Within each bloc a complete network exists and the network be—

tween the distinguished currencies is complete; but to exchange

®We assume, as before, that if Xk changes his rate xkxi
to klxk11, then X1 changes xixk to éixlxk .
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a minor currency in one bloo for a minor currency in another
bloc, it 1s necessary to go through intermediary exchanges with

the distinguished currenc’es. Such a network appears in Pig. 2.

Y Y
1 2
5 <
/
b by,
S ¢
yA
22 < ‘(j #1
//‘/' /
Z) ¢ »21 ‘//
.. W
vz, ) 2

Pig. 2
The "capital” countries here are X, Y, Z, and W. A typical

cycle might appear as below:
1 1 s
x, X ...xPxryl.vdvzzl. . zRaned . wPuax

By successive application of (1) the reader can verify that

the following product of cycles can be substituted for it

X, X', ot xSy -2zt 2"z - et xvzex
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If the original cycle had a value greater than one we again res—
son that one of the above cycles must. Hence 1t is sufficient
(and obviously necessary) to examine, for the possibility of
arbitrage, each of the complete networks which arises by con—
sidering a single bloc plus the complete network among the

"capitals.”

l1.2.2 Commoditx;Curroncl Exchange, Pinally we consider networks

in which certain nodes correspond to currencies while others
correspond to commodities at various loocations in time or space.
At each country, there are defined exchange rates for commodities
in terms of that country's currency, and an exchange rate for a
type of commodity in one country in terms of the same type of
commodity in another country (such a rate takes into account

ad valorem shipping or holding charges levied in the transferal

of a commodity from one country to another ). We are interested

in determining, under various circumstances, the number of trans—
actions necessary to permit arbitrage when dealing in a commodity.
Because we are primarily interested in commodity arbitrage, we
confine our attention to the case in which it is impossible to
arbitrage in money alone (1.e. the subt-network composed of c.rrency
nodea is in equilitrium). Since the costs of shipping commodities
are 80 much larger than the cost attached to money transactions,
we first consider the situation where the currency sub-network

is a pure exchange network.
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PROPOSITION 1l. In a combination currency—commodity network

for which the currency sub—network is a complete pure—exchange
network, if an arbitrage possibility utilizing ocommodity trans-—
actions exists, then only one commodity shipment need be mado..
Proof: Let x1 stand for the currency of country i and Y1
and Z1 for particular commodities purchasable in country 1. Then,
should the cycle shown in Pig. 3 permit arbitrage, by utilising
the pure exchange of currenc,, we could substitute for it the
*wo cycles XII2Y2Y}X}XI : xlxjx,zuzsxsxl whose product must
again be greater than one. Hence one of these must permit

arbitrage, while each involves only one commodity.

Pig. >

One implication of the proposition is that under the
hypothesis, a firm of arbitragers may be sectioned into groups
of commodity specialists, each group searching for profitable
transactions by exchanging its own commodity. Such a division
of effort is bound to discover an arbitrage possibility i1f one

exXists.

fin Lne case (i [uiur@3 idadlilig, Ae Lnleifpies  shiipment
as the act of holding the commodity from one period of time to
another, while perhaps incurring storage costs; the transaction
might also involve physical transport of the commodity.
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The proposition remains valid if the currency sub-—network
is not in equilibrium, but in this case it may occasionally be
better to dispense with commodity transactions altogether. Wwhen
we consider the situation where (2) does not hold in the currenocy
sub-network, then the assertion is no longer true.

wWhen the rate of exchange of currencies depends to a signi-
ficant degree on the location of the currency (e.g. the dollar
for pound rate in New York is not the same as the dollar for
pound rate in London), the currency network becomes a special
kind of commodity network. Unlike the commodity networks dis—
cussed thus far, it has no underlying currency sub-network. A
diagram appropriate to the situation, Fig. 4 indicates several
families of currencies, each attached to a location or home
currency. A currency can change location only by exchange with
home currencies or by shipment. In the latter case there may or
may not be a cost attached to shipment. Dotted lines correspond

to possibllities of shipment,

!l Z,
/ ;

Y¢ \ zZ,
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2. A STATIC LINEAR PROGRAMMING MODEL

It 18 commonly recognized that linear programming may be
applied to several models of international trade (2, 5, 6, 8,
9, 10 |, In this section we present a linear prog.amming
formulation of exchange transactions which formally embodies
or extends several of the previous results. PFor the sake of
simplicity, we confine our discussion in this section to a
complete (not necessarily pure—exchange) system of currency
exchange; the reader will have no difficulty in making the
necessary modifications to allow for the possibilities of
commodity exchange or for an incomplete system.

We let ‘1J 2 O be the number of units of currency xi
exchanged for that of currengy XJ and °1J >0 be the ex—
change rate of xi's currency for XJ'a ouxronoy.. To econstruct
the model which ascertains the existence of arbitrage, we let
M > O be an arbitrary amount of some currency, say xl's, whieh

we wish to earn by means of currency transactions. The con-

straint equations of the linear programming model are

n n
(%) = Jfa‘lj v n*a 2 M
and
(5) =X 4+2 Cq X 2 0 k «2,3,..., n
Jdk - Jék

*Heretofore, we denoted °13 by xixJ 5
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The cost form being minimized is 1dentically zero in this form—
ulation. Equation (4) ensures that the net gain from all cur—-
rency transactions involving xl'a currency s at least M, and
Equation (5) ensures that the net gains in the remaining currencles
are non—negative (1.e., no debts may be incurred). Note that

1f a feasible solution to () and (5) exists, any positive

multiple ( > 1) of all the x,, also yields a feasible solution;

1
equivalently, the feasibility of (4) and (5) is independent of
M.*

If we are merely interested in locating an arbitrage
scheme, only search for a feasible solution to the model. In
addition we may wish the solution to have some "optimal ' property.
For example, we may desire to find that solution which involves
the least amount of selling of Xi. In this case we would

n
(6) min X
ng H

A 3
In the speclal case of a pure exchange network, {.e ,

CiJ cJi a 1, we may reduce the number of variables by netting
out xU and xji'
exchange of xl's currency for that of X

Explicitly, let yij’ 1 ¢ 3, denote the net
;"
-y - - X + C,. X .

1) 1] JiJ1

The variable y1J is unrestricted in sign. We note that

clinJ - cinij - xji' and thus the model becomes

n
(') - Y}y M
s 2

(51) - y + c ZO k =2, ..., n,
J§x KJ J%( JK

(Continued on next page)
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Or there may be a fixed transaction cost dij involved in making
the exchange 11J , and we may wish to find a solution which
minimizes the sum of the transaction costs; the special case of
dlj e 1 corresponds to minimizing the total number of transactions
used in the solution. In thle case we add to the equatlioons

(7) x,, =L 7 < 0 Tyy =0 or 1
and L > O is an aroitrarily large number

(8) min I 'Tijdij g

Constraint (7) ensures that whenever ‘1J > 0, Tij - 1,

If we convert (4') and (5') to equalities by adding slack

variables r k=1,2, ..., n, and utilize the fact that the

y1J are unognltrainod in sign, we can solve for ’lj‘ J =2, 3,...,n,
(or alternatively Yy ge1 J=1,2, ..., n=1) tn (5') and eliminate
these variables by substitution in (4') ylelding
[ ) [ a
Zau yiJ-kglﬁkrk-n B, >0

where the y;J are the remaining variable and QIJ their co—
efficients. A necessary and sufficient condition for no arbitrage

to be possible 1s that all the a;J

*
relations °1J = 0 either Proposition 3 or equivalent conditions

for equilibrium, depending on the y chosen for elimination.

We also note that since we only noo&Jto investigate basic solu—
tions in a linear programming model, part (11) of Proposition 3'
can be verified from the programming model; in fact, if an
arbitrage possibdbility exists, it is posaidble to earn M units

of any currency in no more than n transactions, given the
assumptions of the statio formulation.

= 0. One can derive from the
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and (8) ensures that e 1 only if ‘13 > 0 . The systenm

rij
with (7) added 1s a linear programming model involving several
integer—valued variables; consequently one m.st resort to an
algorithm such as that of R.E. Gomory [4] to solve the problem.
Despite the simplicity of structure and compactness of
constraints of (4) and (5), the model has two main drawbacks.
Pirst, the arbitrage possibility indicated by the model may
require that the arbitrager is able to execute his exchange
transactions instantanecusly ('.e. without liquidity con-
straint) or, alternatively, that he possess caplital reserves
in some other country tran his own. An example of such &8
solution would be an American arvitrager earning dollars by
selling pounds for francs, francs for lire,a~n? lire for pounds,
and then converting his profits !n pounds into dollars. Such
a chain of transactions might be impossible unless the arbitrager
had a certain amount of foreign (pounds) funds available to
"pump—prime" the pounds—francs-—lire cycle, or were in a position
to act inltantaneOUlly.. Second, the modei 1is ill-equipped to
solve the problem of finding arbitrage possibilities in a few
transactions. Although the technique illustrated in (4) and
(5) can be adapted trivialiy to provide an upper bound constraint
on the number of allowable transactions (number of non--zero xiJ),
the complexity of the partial integer linear programming problem

ie increased considerably. The model presented in the next

*The arbitrager would alsc have the possibility of converting
Jollars into pounds, compounding profits in the pound-franc-lire
market by repeating the arbitrage cycle, discovered by the model,
provided the profitable set of rates existed long enough, and then

aonvorting enough pounds back to dollars to overcome an "un—
favorable doliars—to—pourds conversion rete,
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section, although it apparently involves more equations, over—
comes these difficulties and also has a special structure ena-—
bling the direct computation of a complete solution without
resort to an iterative technique such as the simplex method.
Consequently we do not recocsmend the arbitrager use (4) and (5).
Our present model is well suited to solving the intemational
adjustment prodblem posed in Section 1.1.2, viz., given a system
S which is not in equilibrium, to find an equilibrium system 8'
vhich involves changing the least number of rates in S. However
by Proposition 5 any consistent sub-system can be extended to
a complete equilibrium lyltll)lnd hsnce our problem reduces to
finding the largest sub—system in equilibrium (the arcs which
are to remain the same must certainly be in equilibrium). Hence
we wish to find the largest sub—system such that (1) and (2)
are infeasidble. Consider the dual prodlem: ocorresponding to

each x we have

1

(6) = N ¢y vJ'g 0 v, 20 max Mv,

where the v, are the dual variabdles.

We know from the Dual Theorem [3] that no solution to (1)
and (2) exists only if either no solution or an infinite solution
exists for (6). But v, = 0, for all k, 1s an obviously feasible
solution to (6); consequently to solve our problem we want to
find the maximal number of dual relations which admit an infinite

solution. We observe the relations (6) are homogeneous, and

thus an infisite solution exists if and only 1f a feasible solution
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to the subsystem can be found with vl = 1 (because of the homo—

geneity, the maximal subsystem is independent of the actual value

Y

chosen for vyl Consider a related dual problem:
(7) vy ¥ ey V- tij -0 ve 2 0, tiJ 2 © v, =1

(1) t,, - 8¢ < 0 €. = 0,1,

1d

and 8 > O 1s a large positive number

(9) min ZeU

Note that (8) ensures that tiJ - 1 if t’i_j > 0, and (9) ensures
> O only if ¢t > 0. The model solves for a set of

“19 1
v, (vl « 1) which exactly satisfies as many relations in (o)

that

as poesible; any relationsin (7) where tiJ > O implies the
original dual relation in (v) i1s not satisfied. Those relations

Jor which t1J =« 0, indicate the maximal sub—netuork..

In the pure exchange network, all we need are

(71') - v, + CgVy + Uyy = Wy = 0 1<y v 20, uge 2 0"1J >0
(8') Upy + Wy = S¢1J <0 1 ¢ J, €y " O M
and S 18 a large positive number

(9') min ) €
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3. A NETWORK FLOW METHOD

Suppose that a potential arbitrager with resources 1in
some country's currency, not necessarily "dollars”, wishes
to maximise his profit in “dollars" subject to the restriction
that he enter into no more than n tiruznsactions. We will pre—
sent a model which solves this problem and at the same time
solves an identical problem for initial resources in the cur-
rency of any other country,

We first consider the problem of maximizing profit while
restricting the number of transactions to n or less, where n
is the number of ourrencies in the system under consideration.
In order to visualize the possibilities of buying and selling

that might arise, we oconstruct a diagrea for n = 3, suoch as

C
in Pig. 1y A 2
> C
C.‘ ¢ » .
2 - C
4 > < ' 7 ‘v
o) ]
s P :
’ 'S ' (/3 V\)
oo = 2
3 & v \ 3
Pigure %

The °1J" act as flow amplifiers or deamplifiers and
represent the exchange rates. The problem is to maximige the
flow entering the sink on the bottom right (i.e. the number

of units of 13'5 currency.) PFortunately this sort of linear
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programming problem can be solved in an exceedingly simple way,
as has been noticed by W. Prager [7] and utilized by A. Charnes,
W. W. Cooper, and M. Miller in [1]. If the equations which
describe "conservation" of flow for the various nodes are
written down in an obvicus systematic way, taking the nodes
in the first transaction, then the nodes in the second trans—
action, etc., the matrix expressing the problem takes the form
in Pig. 6.° The x¥

1)

to XJ'I at "stage k.' The equations on page 35A correspond

to the example sabove.

represent the amounts of Xi'a money turned

The R1 { =1, 2, 3 are the avallable resources at Xl.

The u 1i=1, 2, ..., 12, represent the dual variables. We

1)
will solve the problem by assigning values to the dual variables

in such a way as to minimicze ulR1 + u2R2 + u}RB. This will
determi.ie an optimal solution by the Dual Theorem [)]. In

order to solve the dual problem, we simply assign u;, - 1,

- - C The dual equations then require that we

Y11 T %23 Y10 13"
assign u7, ug and u9 80 that

By adding the flow in—-flow out" equations for all nodes
corresponding to the same currency, we generate a set of new

equations. If the variables yiJ - f;xtj are substituted in
K=

these equations, the columns, or activities, will take the fom
exhibited in the static model.
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uy 2 max (Ul2'c)2‘ll'cjldlo) - max (1,c52c25,c}lcl))

(10} u, > rax (c2)U12“11'L21110) = max (C25'C2j'c21C15)

~

ip 2 max (€ 4u15,C 50170 10) = maK (C)4,C15C55,0 0,

Having assigned values to Lgs Uy and g which satisfy (10),
we derive similar equations for u , g and u, and for das g

and uy - In order to minimize R, + u2R2 + u)R}, we evidently

‘171
must minimize wu;, u, and iy (R1 20, {=1,2,3) and thus we
can do no better than to define the dual variables to be as
small as possible at each step of the procedure. Hence we
determine Ug» g and u, 80 tnat equality holds in (10) and
continuing in this way we assign values to all the dual variabloa..
We obtain a solution to the original problem by throwing away the
geet of columns whose dot product with the dual variables 1s not
exactly zero and solving this simplified system with the last
three columns,

A little consideration will show that despite the large site

which the matrix might present, e.g. in a case involving 50

®A dynamic programning, or functional equation, approach
provides an alternative means for deriving the algorithm. Let

rk(xi) denote the maximum amount of currency of ocountry X
achlievable starting with a unit of currency of country X1 and

making k exchange transactions. We allow for the foregoing of an
exchange by defining Cyy = 1 to be the exchange rate of a unit of

ourrency of country X1 for itself. If a single transaction is
UL AL L £(X,) = ey 1= 1,2,...,n.

-
f'k+1(ll) - la.ﬁimum .}oljg( (XJ) A

which is analogous to (10).

The recursion relation is
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currencies, the exceedingly simple way of @ssigning dual variables
will keep the problem manageable. Two further important observa-—
tions should be made. Since the method of assigning dual varia—
bles is independent of the currency inputs, and since the value
of the optimal solution can be computed by taking the dot product
of the dual variables with the right hand side, it is apparent
that the value of a dual variable indicates that extra amount
of profit which might be realized by introducing, at the corres—
ponding node, one unit of the appropriate currency. As a result,
our sclution of the problem for n stages has also solved the
problem for all intermediate stages. When we reach any stage 1in
which a dual variable 1s seen to exceed the corresponding rate
of exchange, we have located a possibility of arbitrage, and
we might use the given resources to take advantage of this pos—
sibility for arbitrage. However, one might prefer to consider
more stages in thc interest of locating greater possibilities
of profit before a decision is reached. 1In adding stages, 1t
is not necessary to begin again but only to start with the pre-
viously found dual variables, to add the new relations at the
beginning, and to continue computing the values of dual variables
antil sufficiently many are assigned. Thus our initial decision
to work with n stages, where n 18 the number of currencles, 1is
not essential. nNn stages, however, have a cartain significance
in that they represent sufficlently many stages to indicate any

existing arbitrage by (11) of Proposition 3'.
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In setting up the network flow molel as in all models of
general exchange networks, a question arises as to exactly which
rates should Le considered as the rates of exchange. An artitrager
mnight feel that the real rate of exchange should reflect the
brokerage charge or, peirhaps, the i{nterest foregone in actually
making a transactior. PFrom a mathematical point of view it
might be desirable to adjust the real rates in 3uc'. & way that
they indicate an arbitrage possibility only in cases where 1t
is profitable to arbitrage after costs and in thore canses Indicated
the percentage of profit that could be made after bLroker's costs
by a single trip around the cycle involved. This adjustment can
be made by multiplying the given clJ'a by (l—le) where plj
1s the percentage taken by the broker (usually 1/32 or 1/6A of 1%)
in a transaction from x1 to xJ

If the arbitraging contemplated will take an appreciable
time, the network flow model can be constrained to deal in pre—
sent discounted funds and, thus, to indicate arbdbitrage only when
the arbitrage presents a more profitable opportunity than leaving

one's money to collect interest for the same amount of time.

Let r be the percentage of interest that could be collected

1)
during tne time it takes to make a transaction from X1 to XJ

Let the adjusted rates ciJ be defined by

It can be casily seen that the flow has become one of present

discounted money.
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The network flow model can also be used as a method for
considering opportunities for speculation. If different rates
of exchange are expected to oocour over time, these rates can bde
introduced in the appropriate stage and the stages thought of
as representing time periods. A discount factor of the type

above may be used as a first approximation to provide a 'certainty

equivalent” for the risk involved in the speculative activity.



10.

A-1478
40—

REFERENCES

Charnes, A., W. W. Cooper, and M. Miller, Dyadic Problems
and Sub=-Duzl Methods, ONR Research Memorandum No. 21,
December, 13%7, Furdue University.

Dorfman, R., ?. A. Samuelson, and R. M. Solow, Linear
Progranlig‘;and Economic Analysis, McOraw H11T, New York,

Gale, D., H. W. Kuhn, and A. W. Tucker, '"Linear Programming
and the Theory of Gaves, Activity Analysis of Production
and Allocation, T. C. Koopmans (ed.), John Wiley and Sons,
Tnc., New York, 1951.

Gomory, R. B., "Integer Solutions to Linear Programming
Problems, " Paper pressnted at Econometric Soclety Meeting,
August 27, 1958, Cambridge, Massachusetts.

McKkensie, L. W., "Specialization and Bfficiency in World
Production,”" Review of Economi:s Studies, Vol. 21, No. 5,
June, 1953, pp.

McKenzie, L. W., "On EBquilibrium in Graham's Model of World
Trade and Other Competitive Systems,' BEconometrica, Vol. 22,
1954, -ov. 147-161.

Prager, W., "On Warehousing Problems,” Operations Research,
Vol. 5, No. &, pp. 508=512.

Reiter, 8., "Trade Barriers in Activity Analysis,’ Review
of Economic Studies, Vol. 20, No. 3, June, 1953, pp. 174-180.

Samuelson, P. A., "Spatial Price EqQuilibrium and Linear
Programming, ' American Economic Review, Vol. 42, 1952,

pp. 282-303.
Whitin, T. M., "Classical Theory and Linear Programming in
International Trade," Quarterly Journal of Economics,

Vol. 67, 1953, pp. 52 g



